Vitamin C is an essential nutrient that has redox functions, is a cofactor for several enzymes, and plays an important role in the synthesis of collagen. A severe deficiency in vitamin C results in scurvy, which is associated with malaise, lethargy, easy bruising, and spontaneous bleeding. One of the effects of scurvy is a change in collagen structure to a thinner consistency. Normal consistency is achieved with administration of vitamin C.

In the mid-20th century, a study hypothesized that cancer may be related to changes in connective tissue, which may be a consequence of vitamin C deficiency. A review of evidence published in 1974 suggested that high-dose ascorbic acid may increase host resistance and be a potential cancer therapy.

Vitamin C is synthesized from D-glucose or D-galactose by many plants and animals. However, humans lack the enzyme L-gulonolactone oxidase required for ascorbic acid synthesis and must obtain vitamin C through food or supplements.

Some companies distribute vitamin C as dietary supplements. In the United States, dietary supplements are regulated as foods, not drugs. Therefore, premarket evaluation and approval of such supplements by the U.S. Food and Drug Administration (FDA) are not required unless specific disease prevention or treatment claims are made. Because dietary supplements are not formally reviewed for manufacturing consistency, ingredients may vary considerably from lot to lot and there is no guarantee that ingredients claimed on product labels are present (or are present in the specified amounts). The FDA has not approved the use of high-dose vitamin C as a treatment for cancer.


The earliest experience of using both oral and intravenous (IV) vitamin C for cancer treatment was by a Scottish surgeon, Ewan Cameron, and his colleague, Allan Campbell, in the 1970s. This work led to a collaboration between Cameron and the Nobel Prize-winning chemist Linus Pauling, further promoting the potential of vitamin C therapy in cancer management. As a result, two clinical trials of oral vitamin C were conducted in the late 1970s and early 1980s. These two trials did not use IV vitamin C.

Pharmacokinetic studies later revealed substantial differences in the maximum achieved blood concentrations of vitamin C based on the route of administration. When vitamin C is taken orally, plasma concentrations of the vitamin are tightly controlled, with a peak achievable concentration less than 300 µM. However, this tight control is bypassed with IV administration of the vitamin, resulting in very high levels of vitamin C plasma concentration (i.e., levels up to 20 mM).[6,7] Further research suggests that pharmacological concentrations of ascorbate, such as those achieved with IV administration, may result in cell death in many cancer cell lines.[8]

Health care practitioners attending complementary and alternative medicine conferences in 2006 and 2008 were surveyed about usage of high-dose IV vitamin C in patients. Of the 199 total respondents, 172 had administered vitamin C to patients. In general, IV vitamin C was commonly used to treat infections, cancer, and fatigue.

Pricing (Vitamin C only)

  • 10grams $160
  • 25grams $205
  • 50grams $250
  • 75grams $275
  • 100grams $300